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The effect of surface tension on the onset of convection in a horizontal double-diffusive 
layer was studied both experimentally and by linear stability analysis. The experiments 
were conducted in a rectangular tank with base dimension of 25 x 13 cm and 5 cm in 
height. A stable solute (NaC1) stratification was first established in the tank, and then 
a vertical temperature gradient was imposed. Vertical temperature and concentration 
profiles were measured using a thermocouple and a conductivity probe and the flow 
patterns were visualized by a schlieren system. Two types of experiments were carried 
out which illustrate the effect of surface tension on the onset of convection. In the 
rigid-rigid experiments, when the critical thermal Rayleigh number, RT,  is reached, 
large double-diffusive plumes were seen simultaneously to rise from the heated bottom 
and descend from the cooled top. In the rigid-free experiments, owing to surface- 
tension effects, the first instability onset was of the Marangoni type. Well-organized 
small plumes were seen to emerge and persist close to the top free surface at a relatively 
small RZ (where subscript M denotes ‘Marangoni’). At larger R,T > RG (where 
subscript t denotes ‘top’) these plumes evolved into larger double-diffusive plumes. 
The onset of double-diffusive instability at the bottom region occurred at a still higher 
Rr > R,T (where subscript b denotes ‘bottom’). A series of stability experiments was 
conducted for a layer with an initial top concentration of 2 wt YO and different 
concentration gradients. The stability map shows that in the rigid-free case the early 
Marangoni instability in the top region reduces significantly the critical RT for the 
onset of double-diffusive convection. Compared with the rigid-rigid case, the critical 
RT in the top region is reduced by about 60 % and in the bottom region by about 30 %. 
The results of the linear stability analysis, which takes into account both surface- 
tension and double-diffusive effects, are in general agreement with the experiments. The 
analysis is then applied to study the stability characteristics of such a layer as gravity 
is reduced to microgravity level. Results show that even at 10-4g0, where go is the 
gravity at sea level, the double-diffusive effect is of equal importance to the Marangoni 
effect. 

1. Introduction 
Under terrestrial gravity, convective motion driven by surface-tension gradients is 

noticeable only in very shallow (- 1 mm thick) fluid layers. Otherwise, buoyancy 
effects are the dominant driving forces. However, when a thick fluid layer stably 
stratified by solute concentration is heated from below, it is likely that Marangoni 
convection will onset at the free surface while the bulk fluid is still stationary owing to 
stable density stratification. The interactions between the Marangoni and double- 
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diffusive instabilities as the gravity is reduced from the terrestrial to the microgravity 
level is a problem not only of theoretical interest, but of practical value. This latter 
aspect arises when manufacturing processes in which there are temperature and 
concentration gradients in a fluid layer with a free surface are carried out in space. 
Laboratory experiments to investigate such interactions can be readily carried out on 
Earth and, with some care, in space. 

With this objective in mind, one of us (Chen 1991) conducted a series of experiments 
on a layer of stratified salt solution with a free surface heated from below. The 
stratification was obtained by filling the test tank with successive layers of constant- 
concentration salt solution. The top layer was always distilled water. The results were 
completely unexpected. The fluid motion at the onset of instabilities in a layer with a 
free surface was found to be no different than that in a layer with a rigid top boundary. 
Within experimental error, the critical thermal Rayleigh numbers for the two cases are 
the same. In order to gain some theoretical insight to the problem, a linear stability 
analysis for such a fluid layer was developed (Chen & Su 1992). Results indicate that 
the onset of instability should occur at a much lower thermal Rayleigh number when 
reasonable surface-tension gradients with respect to temperature and solute con- 
centration are assumed. Since water is notorious for its susceptibility to surface 
contamination (see for example Platten & Villers 1988) the abnormal experimental 
results are thought to be the consequence of such contamination. The effect of surface 
contaminants in these experiments is to reduce the surface-tension gradients due to 
temperature and concentration to essentially zero. 

Recently we carried out a series of experiments in which the initial salt concentration 
at the free surface was gradually increased from 0 wt YO to 3 wt YO in an effort to reduce 
the effect of surface contamination. In these experiments, a constant initial stratification 
was maintained. We found that contamination was indeed reduced as the initial 
concentration at the free surface was gradually increased from 0 wt % to 1.5 wt YO. In 
the range of 1.5 wt YO to 3 wt YO, the onset of instabilities occurred at the same thermal 
Rayleigh number, and the convection pattern at onset, which is clearly of the 
Marangoni type, remained the same. Based on these results, we conducted experiments 
on fluid layers with increasing initial stable stratification and an initial salt 
concentration of 2 wt YO at the free surface. 

In this paper, we report the observed results of the interactions between the 
Marangoni and the double-diffusive instabilities. The experimental apparatus and 
procedure are described in 92. The results of the preliminary experiments and the 
interaction experiments are presented separately in 993 and 4, respectively. In 95, the 
results of the linear stability analysis are compared to those obtained by experiment, 
with satisfactory agreement. Then, the analysis is applied to study the effect on the 
stability characteristics of the fluid layer of reducing gravity to a microgravity level. 
The results of our investigations are discussed in 96, and the major conclusions are 
presented in 97. 

2. Experimental apparatus and procedures 
2.1. Apparatus 

The experiments were conducted in a rectangular box with inner base dimension of 
25 x 13 cm and 5 cm high. The sidewalls of the box were made of optical glass to 
facilitate schlieren flow visualization (see below). The top and bottom constant- 
temperature plates were made of stainless steel but in most of the experiments with the 
free surface, a brass top plate was used. In both cases, the top plate, which was 
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removable, was provided with passages through which water from a constant- 
temperature bath could circulate. Beneath the bottom plate of the box was an 
aluminium base, in which water could circulate through passages. In order to ensure 
good thermal contact between the aluminium base and the stainless steel plate, a 
thermal joint compound was applied to all contact surfaces. Thermocouples were 
embedded in the top and bottom plates of the box near the inside surfaces. Their 
output was recorded and linearized using a Data Logger. The top and bottom of the 
box were insulated with 5 cm thick Styrofoam. The sidewalls were not insulated to 
allow for continuous flow visualization during the experiment. This did not seem to 
influence the results because the temperature differences attained were usually small 
(not larger than 6 "C above or below room temperature). Water at different constant 
temperatures was supplied to each plate by two separate constant-temperature baths. 

Vertical concentration and temperature profiles were measured by a dual probe 
consisting of a four-electrode Micro Scale Conductivity Instrument (MSCI, Precision 
Measurement Engineering, CA) and a thermocouple. The sensor of the MSCI and the 
thermocouple junction were located at the same vertical level, at a horizontal distance 
of 0.3 cm. The probe was traversed vertically through the stratified fluid at a constant 
speed of about 0.11 mm s-', recording the conductivity and temperature each 10 s, 
which resulted in about 40 data points over the layer depth. Data were always recorded 
while the probe was traversed downwards, with the two sensors ahead of the probe 
holder, to minimize any disturbances at the measured region. The MSCI was calibrated 
before and after each experiment against six solutions of known concentrations. The 
output voltage of the MSCI was translated into concentration using the local measured 
temperature and the relations for aqueous NaCl solution given by Head (1983). 

The convective motions were visualized using the schlieren technique. The schlieren 
system consisted of two spherical mirrors, 15.24 cm in diameter and 152.4 cm in focal 
length, a white light source and a knife edge. The system was set up such that the 
circular parallel beam was passed horizontally through the mid-section of the tank 
visualizing an approximately 13 cm section out of the total box length of 25 cm. The 
output of the schlieren system was imaged by a CCD camera, and was displayed on a 
monitor and also recorded by a time-lapse VCR for later reviewing. The flow was also 
visualized by particles using a suspension of rheoscopic concentrate. The suspension 
was added to the stratified fluid in a uniform concentration of 0.15 wt %. The particles 
were used to visualize the structure of the flow from the top. 

2.2. Procedures 
In all experiments the depth of the salt-stratified fluid layer was 4cm. In the 
experiments with a rigid surface (R-R), the top plate was put on Plexiglas supports of 
height 4 cm, such that the fluid was in contact with the plate. In the experiments with 
a free surface (R-F), Plexiglas supports 4.9 cm in height were used, thus forming an air 
gap of 9 mm thickness above the fluid surface. Many experiments on convection driven 
by surface-tension gradients were performed with a very narrow air gap between the 
liquid and the cooling plate (e.g. Koschmieder & Biggerstaff 1986). The analysis of 
Ferm & Wollkind (1982) suggests that a small air gap tends to enhance the stability of 
the layer. Furthermore, the large evaporation rates of the aqueous solutions used here 
preclude the use of small air gaps since condensation on the top plate substantially 
alters the gap shape and size during the experiment. 

Before starting each experiment the box was filled with eight layers of salt solution 
of equal thickness (0.5 cm) but with decreasing concentration. The filled box was left 
to stand for 2 h. A one-dimensional time-dependent numerical calculation that we 
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developed predicted that the eight-layer structure would become smooth by molecular 
diffusion within this time period. This was verified by the concentration profile 
measured 2 h after filling the tank. During the 2 h waiting period, the stratified fluid 
was brought to an almost uniform temperature by applying equal temperatures at the 
top and bottom plates. 

In the case of R-R boundaries, each experiment started by increasing the bottom 
plate temperature by 0.5 "C and decreasing the top plate temperature by 0.5 "C, thus 
imposing a temperature difference of 1 "C across the layer. This temperature change 
was allowed to diffuse across the layer over a period of 50 min, the heat diffusion time 
for a water layer 2 cm thick. Then an additional change of 1 "C was imposed across the 
layer, and so on. In the experiments with R-F boundaries the same procedure was 
employed except that the top plate temperature was reduced by 1.5 "C in each 
adjustment because of the air gap. The resulting actual change of the fluid surface 
temperature was later estimated by the measured vertical temperature profile. The 
vertical profiles of concentration and temperature were always measured before each 
temperature adjustment, when the system was in a quasi-steady state. 

The temperature gradient was increased until double-diffusive instability plumes 
were observed at the bottom and top plates. In those experiments where instability 
started near one plate before the other, the temperature gradient was further increased 
until both the top and bottom regions became unstable. At this slightly supercritical 
condition, the system was allowed to stand for a few hours until a state of turbulent 
thermal convection across the layer was reached. 

3. Preliminary experiments 
The first experimental study on the effect of surface tension on double-diffusive 

instability was done by Chen (1991) in an experimental facility essentially similar to the 
present one. Chen heated from below stratified layers of different solutes, with the same 
density gradient. He established the concentration gradient by filling the box with four 
layers of solution, the top 1 cm layer was always pure water. In his R-F experiments, 
using the shadowgraph technique, the first instability onset was double-diffusive at the 
bottom region and later double-diffusive plumes appeared at the top region. Only very 
weak plumes were observed in the box corners before the onset of double-diffusive 
instability at the top, and these were attributed by Chen (1991) to surface-tension 
effects. 

Our preliminary set of experiments was aimed at understanding what parameters 
control the surface-tension properties in our system. Since the surface-tension 
properties vary with the salt content of the top layer, we studied the effect of the top- 
layer concentration on the stability characteristics of the layer. We have carried out a 
series of experiments with R-F boundary conditions, with the same initial overall 
concentration difference ASo = 0.7 wt %, but with different initial top-layer con- 
centrations, in the range 0 < Stop < 3 wt %. For each experiment we calculated the 
critical value of the thermal Rayleigh number, RT,  for the appearance of convective 
plumes in the fluid. This critical RT (as defined in 54.2) was based on the measured 
linear vertical temperature profile. 

The results are shown in figure 1, in which we now focus on the cross symbols which 
correspond to the first onset of instability at the top region, in the form of small 
plumes, later referred to as Marangoni instability (see 54.1). In the experiment with 
Stop = 0 wt % the Marangoni instability was not observed, in agreement with the 
observation by Chen (1991). However, as Stop was increased to 0.5 wt% the 
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FIGURE 1. The effect of the initial top-layer concentration Stop on the critical RT in the R-F case. The 
overall concentration difference ASo = 0.7 wt %. X, Marangoni instability; 0, 0, double-diffusive 
instability in the top and bottom regions, respectively. 

Marangoni instability appeared at relatively high RT. As Stop was further increased, 
the critical RT for the onset of Marangoni instability decreased, but for Stop 2 1.5 wt % 
it seemed to approach a constant value. A similar trend is observed for the critical RT 
for the onset of double-diffusive instability, marked in figure 1 by the open squares and 
circles. 

These results imply that the surface properties change as Stop is increased from zero 
up to Stop = 1.5 wt YO after which they apparently remain unchanged. We have chosen 
to study the stability of the layer in the range where the critical RT for the onset of 
Marangoni and double-diffusive instabilities is essentially constant and, therefore, all 
the stability experiments were carried out with Stop = 2.0 wt YO. 

Another factor which can affect surface-tension phenomena is the cleanness of the 
surface. For example, Schwabe, Lamprecht & Scharmann (1988) have shown that a 
skin of dirt, formed on the fluid surface, can act like a solid layer, totally suppressing 
thermocapillary flow under microgravity conditions. In the context of gravity currents, 
Britter & Simpson (1978), Huppert & Simpson (1980), Didden & Maxworthy (1982) 
and Lister & Kerr (1988) noted that surface contamination caused the air-liquid 
interface to act as a rigid rather than a free surface. In the present study, the salt 
solutions were made of distilled water and analytical NaCl but otherwise no special 
precautions were taken to keep the test box and its environment clean. Therefore it was 
necessary to study the experimental repeatability by performing the same experiment 
several times. With respect to the onset of the Marangoni instability, very good 
repeatability was found within the error limits. This is shown in the stability map below 
(see figure 5). 

4. Results 
4.1. Observations 

In this section we describe the sequences of events in two experiments with different 
boundary conditions. The initial overall salinity gradient was the same, with the 
bottom 0.5 cm layer at 2.7 wt% and the top layer at 2.0 wt%. Experiment 18 was 
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(b )  

FIGURE 2. The different flow patterns as observed by the schlieren technique in an R-F experiment 
with AS" = 0.7 wt %. (a) Stable fluid layer; (b) onset of Marangoni instability in the top layer; (c) 
appearance of deeper buoyancy-driven plumes in the top layer; ( d )  onset of double-diffusive 
instability in the top region; (e) onset of double-diffusive instability in the bottom region; ( f )  two- 
layer structure; ( g )  turbulent natural convection in the fluid. 

carried out with rigid-rigid (R-R) conditions, and experiment 30 with rigid-free (R-F) 
conditions. The observations are based on the flow visualization and the measured 
vertical profiles. Schlieren pictures (made by photographing the video monitor) of the 
different flow patterns in an R-F experiment, performed with the same conditions as 
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experiment 30, are shown in figure 2. A series of six concentration profiles for 
experiments 18 and 30 are shown in figure 3 along with the corresponding temperature 
profiles for experiment 30. The temperature difference mentioned in this section 
corresponds to an equivalent AT across the fluid layer. Its calculation method is given 
in 54.2 in detail. This description illustrates qualitatively the effect of surface tension 
on the stability characteristics of a double-diffusive layer. The quantitative analysis will 
be given in the following sections. 

We first observe the schlieren picture at t = 120 min after filling the box, figure 2(a). 
The grey region is the stratified layer and the white region above is the air gap. This 
schlieren picture shows a uniformly grey fluid, indicating a stagnant state. The 
concentration profiles of the fluid layers in the R-R (left) and R-F (middle) cases are 
shown in figure 3(a). The two profiles are essentially the same. The corresponding 
temperature profile for the R-F experiment in figure 3 (a,  right) shows that the fluid is 
is0 thermal. 

After two temperature adjustments where A T =  1.1 "C, we can observe in the 
schlieren picture (figure 2 b) very small cells, more or less equally spaced along the free 
surface. These cells are identified with the onset of 'Marangoni' instability. The fluid 
layer is simultaneously exposed to buoyancy and surface-tension effects so this 
instability is not purely surface-tension driven. However, it is caused by the forces at 
the free surface (this instability mode does not exist when the top is rigid or at the 
bottom region) and therefore it is hereinafter referred to as Marangoni instability. The 
Marangoni convection is confined to the neighbourhood of the free surface because of 
the stable density gradient in the fluid layer below. As seen in figure 3(b), the 
concentration of the fluid in the R-F case became uniform within a layer of 0.4 cm 
thickness below the free surface due to the convective mixing. This thickness is in 
agreement with the depth of the cells observed in figure 2(b). The temperature profile 
for this stage is not affected, because of the relatively high thermal diffusivity. 

As the temperature difference was increased to AT = 2.6 "C, buoyancy-driven 
convection in the form ofplumes started near the free surface where the stabilizing salinity 
gradient was weakened by the Marangoni convection. These plumes coexist with the 
Marangoni cells as seen by the schlieren picture in figure 2(c). These plumes penetrated 
much deeper into the stratified fluid, and the mixed layer extended down to 
approximately 0.8 cm (see figure 3c, middle, at t = 320). The corresponding 
temperature profile is still almost linear. The appearance of the buoyancy-driven 
plumes is a direct consequence of the earlier Marangoni instability. When the surface 
is rigid, or at the bottom region, the only instability mode observed is double-diffusive. 

Only after one more adjustment, when AT = 3.3 "C, did the double-diffusive 
mushroom-like plumes appear, which caused the Marangoni convection cells to vanish 
as seen in the schlieren picture (figure 2d) .  The domination of the double-diffusive 
convection over the Marangoni convection was identified with the onset of double- 
diffusive instability at the top region. The more vigorous double-diffusive convection 
caused the top mixed layer to deepen down to 1.2 cm (as indicated by the concentration 
profile at t = 370 min in figure 3d, middle) and also slightly affected the temperature 
profile (figure 3d, right). 

After two more temperature adjustments (AT = 4.7 "C) double-diffusive convection 
started at the bottom as seen in the schlieren picture in figure 2(e). Convection in the 
top layer is highly vigorous at this stage. The concentration and temperature profiles 
at t = 470 min (figure 3e)  also indicate the onset of convection at the bottom layer in 
the R-F case. 

Up to this stage, the fluid in the R-R experiment was stable, as indicated by the 
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FIGURE 3. For caption see facing page. 
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diffusive concentration profiles in figure 3 (a-e, left). At t = 500 min, double-diffusive 
convection occurred both at the top and the bottom plates in the R-R case, as 
indicated by the concentration profile in figure 3(f, left) (AT = 6.7 "C). It is important 
to notice that in the R-R case the onset of convection did not always occur at the same 
temperature adjustment in the top and bottom regions (as in experiment 18 described 
here). In part of the experiments, the temperature difference between the top and 
bottom regions caused a considerable variation of the fluid properties, which in turn 
caused earlier onset of instability at the bottom, warmer, region. This will be further 
discussed below. 

At that stage in the R-F case the convection in both top and bottom regions was well 
developed (figure 2f) but it is noticed that the upper region was much more mixed than 
the lower one (figure 3 f ,  middle, AT = 5.3 "C),  because of the earlier instability at the 
top. 

After the onset of double-diffusive convection in the top and bottom regions, the 
system was allowed to stand for a few hours. A state of turbulent natural thermal 
convection was eventually attained as seen in figure 2(g). The measured concentration 
and temperature profiles were essentially uniform. 

The flow emerging at the onset of the Marangoni instability (figure 2b) was also 
observed from the top of the layer. The fluid was seeded with a suspension of a 
rheoscopic concentrate and the top layer was illuminated from the side by a horizontal 
light sheet. This was done in a different experiment with the same conditions as 
experiment 30. Immediately after the Marangoni cells were seen by the schlieren 
system the top plate of the box was removed for a short period of time (about 1 or 
2 min), and the illuminated fluid was photographed. The observed flow pattern, as 
shown in figure 4, covers almost the whole free surface and seems to consist of a 
combination of cells and curved rolls. Bestehorn & Perez-Garcia (1987) performed a 
numerical simulation of BCnard-Marangoni instability in a fluid layer heated from 
below. It is remarkable that the structure observed in figure 4 is similar to some 
elements of the pattern obtained by Bestehorn & Perez-Garcia (see their figure 2). 

The above visualization method was also used to observe the flow pattern at a later 
stage of the experiment when the double-diffusive plumes appeared. By moving the 
horizontal sheet of light to different levels within the fluid we could observe the 
structure of the double-diffusive plumes from the top. These observations were in 
agreement with the side view obtained by the schlieren technique, both indicating large 
mushroom-like plumes. 

The double-diffusive plumes observed here (e.g. figure 2 d )  are similar to those 
observed by Shirtcliffe (1 969) in his classical experiments on double-diffusive instability. 
He showed that the onset of instability in a stable stratified layer heated from below 
is oscillatory, as predicted by the linear theory (Turner 1973). Initially the oscillations 
were regular but with time their amplitude grew and they became disordered. When the 
oscillations became irregular, Shirtcliffe could observe mushroom-like plumes rising 
from the bottom of the tank, very similar to those observed here. Therefore, in the 

FIGURE 3. Concentration and temperature profiles at different stages of experiment 30 (R-F) and 
experiment 18 (R-R). In both experiments ASo = 0.7 wt%. (a) 120 min: the profiles at the stable 
isothermal state. The solid curve in the middle graph is the cosine fit to the measured concentration 
profile with F = 0.82 (see 95). (b) 220 min: onset of Marangoni instability in the R-F case. (c) 
320 min: the appearance of deeper buoyancy-driven plumes in the top region in the R-F case. ( d )  
370 min: the onset of double-diffusive instability in the top region in the R-F case. (e) 470 min: the 
onset of double-diffusive instability in the bottom region in the R-F case. (,f) 500 rnin : the onset of 
double-diffusive instability in the top and bottom regions in the R-R case and the two-layer structure 
in the R-F case. 
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FIGURE 4. The structure of the flow immediately after the onset of the Marangoni instability as 
observed from the top. 

present study, the appearance of such plumes was identified with the onset of double- 
diffusive instability. 

One of the characteristics of double-diffusive convection is that instability can onset 
even when the density gradient is stabilizing (Turner 1973). In order to study whether 
the mushroom-like plumes observed in our experiments stem from double-diffusive 
processes we have calculated the local density gradient in the bottom region of the layer 
before the appearance of these plumes. We have chosen the bottom region because 
there we expect a pure double-diffusive instability without surface-tension effects. The 
calculation was done using the measured temperature and concentration profiles and 
the corresponding local values of CL and p, the coefficients of thermal and solutal 
expansion that were calculated using the polynomials in Ruddick & Shirtcliffe (1979). 
In part of the experiments the calculated local density gradient was stabilizing 
throughout the bottom region, clearly indicating double-diffusive instability. However, 
in some experiments we found a destabilizing density gradient extending 2-4 mm from 
the bottom, into the fluid. This thickness is smaller than the thickness of the 
mushroom-like plumes in the bottom region, estimated to be about 10 mm in figure 
2(e). Hence, in these latter cases the plumes onset in a layer which has both stabilizing 
and destabilizing local density gradients. Even in such a case the instability is 
dominated by double-diffusive processes. 

4.2. The governing parameters 
The dimensionless parameters governing this problem are the thermal and solute 
Rayleigh numbers, RT = g o l d T h 3 / v ~ ,  and R, = g,13ASh3/vKt, the Prandtl number 
Pr = V / K ~  and the diffusivity ratio, T = K , / K ~ .  Here g is the gravitational acceleration, 
CL and /3 are the coefficients of thermal and solutal expansion, A T  and A S  are the 
temperature and concentration differences across the layer (as defined below), h is the 
layer thickness, v is the kinematic viscosity, and K~ and K ,  are the coefficients of thermal 
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and solutal diffusion respectively. The stability characteristics of the layer also depend 
on the thermal and solute Marangoni numbers, M ,  and M,, respectively, as defined 
below (equation (1 1)). However, the ratios R'/M, and R J M ,  as defined in equation 
(13) depend only on the layer depth, gravity and some fluid properties. Since in our 
experiments the fluid properties do not change much these ratios are nearly constants 
(see table 2). 

The top and bottom plates of the box are impermeable and therefore the 
concentration gradient established by the filling process described above is nonlinear 
and time-dependent (see figure 3 a). Therefore a proper definition of A S  is needed. The 
experimental observations show that the onset of instability always occurs near the 
horizontal boundaries of the tank where the concentration gradient approaches zero. 
Therefore we have chosen an average constant gradient to represent the variable 
gradient across the layer. For this constant gradient we estimate A S  as the 
instantaneous concentration difference between the fluid at the bottom and top plates. 
This A S  and consequently R, decrease with time owing to molecular solute diffusion. 

In experiments with a free surface, the onset of Marangoni instability was usually 
earlier than the onset of double-diffusive instability. When the latter occurred, the 
concentration field was already disturbed by convection such that the concentration 
profile had a shape as shown, for example, in figure 3(d, middle). The top region is 
almost uniform, but near the bottom the diffusive profile is still valid. If at this state, 
A S  is estimated as the concentration difference between the bottom and top (as defined 
above), it does not represent the concentration profile near the bottom in a manner 
which is consistent with the representation of the stable diffusive profile of figure 3(a, 
middle). Therefore at any time during the experiment, AS was estimated on the basis 
of the numerically calculated diffusive profile which corresponds to that time. In 
practice, the following procedure was implemented in all the experiments. 

The concentration profile measured 2 h after filling the box was used to estimate an 
initial concentration difference, AS,, which corresponds to time to .  To estimate the 
critical ASc, at an instability event occurring at time I,, > to during the experiment, the 
one-dimensional time-dependent numerical calculation of the evolution of the diffusive 
concentration profile in the box was used. This calculation started from the eight-layer 
structure, and was done with K, = 1.45 x 

First, the time at which the measured AS, is attained by the calculation was 
recorded. (This time was usually larger than 2 h because of the effect of mixing during 
the filling process. This effect decayed during the 2 h waiting period.) From that 
moment, the diffusive profile was allowed to evolve by diffusion for an additional time 
period of tc , - t t , .  The critical ASc, is the one obtained after this period of time had 
elapsed. The A S  calculated in this way was almost the same as the measured one, as 
long as the fluid was stable. Since the different instability events occur at different 
times, ASc, and hence the critical R, are different for each onset of instability in the 
same experiment. 

For the estimation of the critical RT the critical temperature difference AT,, at each 
instability onset is needed. As in the case of the concentration profile, the temperature 
profile becomes distorted owing to the early instability at the top layer. Then the 
temperature profile is not linear any more, and the estimation of the critical 
temperature difference should be based on the temperature difference imposed between 
the plates. Just before each temperature adjustment, the temperature difference 
between the bottom and top plates, AT,  was measured. For experiments with a rigid 
surface this temperature difference was identified with AT across the fluid layer. 
However, for the experiments with a free surface, the temperature drop across the air 

cm2 s-'. 
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FIGURE 5. The stability map. X, Marangoni instability; m, 0,  double-diffusive instability in the top 
and bottom regions, respectively, for the R-F case; 0, 0, double-diffusive instability in the top and 
bottom regions, respectively, for the R-R case. The straight lines were fitted to the data points by the 
least-squares method. Vertical solid lines are error bars. 

gap should be taken into account. For that purpose the measurements of the vertical 
temperature profile within the fluid were utilized. These measurements have shown that 
at the conduction state, where the profile is nearly linear, A T  = C x AT,, where C is 
some coefficient. The value of C was found to vary between 0.3 and 0.5 and therefore 
its average value in each experiment was used to calculate A T  across the fluid. The 
critical temperature difference was estimated as the average of the two A T  values 
measured before and after an instability event. The error associated with A T r  is not 
larger than k0.5 "C. 

The physical properties of the fluid were estimated at the mean temperature and 
concentration in the layer at each instability onset. For these calculations we used the 
data given in Ruddick & Shirtcliffe (1979) Weast (1977), and Batchelor (1991). 

4.3. The stability map 
A total of sixteen experiments were conducted, eight with rigid-free conditions and 
eight with rigid-rigid conditions. The stability results are shown in figure 5 in which the 
critical thermal Rayleigh number is shown as a function of the solute Rayleigh number. 
The overall concentration difference A S o  (i.e. the initial concentration difference 
between the top and bottom layers) was varied from 0.11 to 1.82 wt YO. The initial R, 
(at the onset of Marangoni instability in the R-F experiments) varied from 2.4 x lo6 to 
4.5 x 10'. The physical conditions and the main results of the stability experiments are 
listed in table 1. 

For the R-F cases, when R, > 5.3 x lo6, the sequence of events is similar to what we 
described above and there are three distinct critical thermal Rayleigh numbers. RG 
(denoted in figure 5 by crosses) represents the onset of the Marangoni instability, R,T 
(denoted by filled squares) is for the double-diffusive instability in the top region and 
Rr (denoted by filled circles) is for the double-diffusive instability at the bottom. But, 
for the two experiments with initial R, d 5.3 x lo6, the onset of Marangoni and double- 
diffusive instability at the top occurred simultaneously (i.e. at the same temperature 
adjustment), such that RZ = RT. This is because, at small R,, the thickness of the top 
layer with a weak concentration gradient is increased and so is the size of the critical 
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Marangoni cells. When the size of these cells becomes comparable to the size of the 
plumes at the onset of double-diffusive instability, both modes can onset at the 
same RT. 

For the R-R case there is no Marangoni instability and so no RZ. For R, < 1.5 x lo7, 
double-diffusive instability at the bottom (denoted by open circles) and at the top 
(denoted by open squares) occurred at the same RT (with one exception) such that 
R,T = R,T = RT (where subscript r denotes ‘rigid’). However, for R, > 1.5 x lo7, the 
onset of double-diffusive instability at the bottom occurred at a smaller RT than at the 
top because of the variable fluid properties (see $6).  

Straight lines were fitted through the data points of figure 5 by the least-squares 
method. For the R-F case with R, > 5.3 x lo6, RZ is nearly a horizontal line: 

RG = 5.05 x 105R:.065 

RF = 15.3 x R:.75 

RF = 70.63 x R9.6s 

when 5.3 x lo6 < R, < 4.5 x lo7, ( 1 )  

while R,T and R,T cc R,0.75 and R,0.68, respectively: 

when 

when 

2.4 x lo6 < R, < 4.5 x lo7, 

2.4 x lo6 < R, < 4.5 x lo7. 

(2) 

(3 )  

For the R-R case and for R, > 1.5 x lo7, the critical RT for the onset of double- 
diffusive instability at the top and bottom is different. This is because of the 
temperature-dependent fluid properties as discussed below. However, the difference 
between the data points for the onset at the top and bottom is not large enough to 
distinguish a separate branch for each instability. Hence, a single straight line 
correlation yields 

(4) R,T = 56.36 x R:.72. 

5. Linear stability analysis 
Linear stability analysis of a double-diffusive fluid layer with surface-tension effects 

has been developed by Chen & Su (1992). In that analysis, the temperature and solute 
concentration distributions within the layer are assumed to be linear. In the 
experiments, the actual solute concentration distribution is nonlinear because both the 
top and bottom surfaces are impervious to mass transfer, see figure 3(a). The linear 
stability equations of Chen & Su are modified here to analyse the stability of a fluid 
layer with a nonlinear concentration profile. The theory will predict the critical 
condition for the onset of the first observed instability, the Marangoni instability. 

The nonlinear concentration profile just prior to the onset of Marangoni instability 
can be represented quite accurately by a cosine profile. Murray & Chen (1989) found 
this to be true for a porous layer. The solute distribution is assumed to be 

( 5 )  
A S  

S = So + F-cos ( T Z / ~ ) ,  
2 0 < z / d  < 1, 

where So is the mean concentration of the layer, A S  is the concentration difference 
across the layer determined by the methods stated in $4.2, and F is a constant factor 
chosen to fit the cosine profile to the actual one for each experiment. As shown in table 
2 the range of Ffor all the R-F experiments is between 0.7 and 0.8, and for all the R-R 
experiments it is between 0.6 and 0.7. A typical cosine profile that was fitted to the data 
points with F = 0.82 is shown in figure 3 (a ,  middle). As can be seen the agreement 
between the fitted profile and the measured one is very good. 
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Case F R, RT a UI R T I 4  
R-R 0.74 2.54 x 10‘ 2.293 x lo6 11.7 884 - 

0.72 4.80 x lo6 3.995 x lo6 14.2 1125 - 
0.73 8.03 x 10‘ 6.423 x lo6 16.3 1427 - 
0.66 1.57 x lo7 1.079 x lo7 18.7 1843 - 

0.59 2.24 x lo7 1.341 x lo7 19.8 2054 - 

0.60 3.47 x lo7 2.021 x lo7 21.9 2510 - 

R-F 0.77 2.490 x lo6 1.323 x lo5 15.5 323 18.5 
0.76 5.400 x 10‘ 2.512 x lo5 18.7 484 25.6 
0.80 9.802 x 10‘ 3.512 x lo5 22.0 692 27.3 
0.79 1.808 x lo7 3.909 x lo5 25.8 981 23.6 
0.74 2.815 x lo7 4.377 x lo5 28.5 1220 22.7 
0.79 4 . 6 3 0 ~  lo7 5 . 6 8 0 ~  lo5 33.2 1721 23.0 

TABLE 2. Critical conditions as predicted by the linear stability theory 

__ 

- 304.6 
- 304.8 
- 304.9 
- 305.3 
- 305.8 
- 306.5 

The linear stability equations for a basic solute distribution given by ( 5 )  become 

(D2 - a2)  W = (D2 - a2)  W - a2(RT T’ - R, S’) ,  
i a  

Pr at’ 
__ 

- (Dz  - a2) T‘ + W’, 
a T’ -- 
at! (7) 

(8) 
as’ - _  - 7(D2 -az) S’ + W’Fz sin (nz’), 
at’ 2 

in which W’, T’ and S’ are the non-dimensional perturbation vertical velocity, 
temperature, and solute concentration, and t’ and z’ are the non-dimensional time and 
the vertical coordinate. The characteristic values corresponding to these variables are 
Kt/d, AT, AS, d2/Kt and d, respectively. D denotes d/dz’ and a is the non-dimensional 
wavenumber. This set of equations is essentially the same as that given by Chen & Su 
(1992, equations 7-9) except for the multiplying factor (n/2) Fsin (nz’) of the last term 
in the solute conservation equation (8). The boundary conditions are 

W’ = DW’ = T’ = DS’ = 0 at z‘ = 0, (9) 
W’ = DT’ = DS’ = 0, DzW’ = -az(Mt T’+M,S’) at z’ = 1, (10) 

in which the thermal and solutal Marangoni numbers are defined as 

where yt and y, are defined by equation (12) below. The bottom boundary is assumed 
to be rigid, non-diffusive, and at constant temperature. The top free surface is assumed 
to be plane and non-diffusive. The correct temperature condition is DT’ = CT(C is a 
constant). From Nield’s (1964) results for the pure thermal case, we anticipate that the 
critical conditions will not be greatly altered if DT’ = 0. The last expression in (10) is 
the balance of the shear stress at the free surface due to viscosity and to the surface- 
tension gradient. 

The surface tension CT of the fluid is assumed to be linearly dependent on both 
temperature and solute concentration: 

CT = a,-yt(T-T,)-~y,(S-S,) .  (12) 
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FIGURE 6. Critical thermal Rayleigh numbers as predicted by linear stability theory compared with 
the experimental values. Theoretical results for the R-R condition (. . .O.  . .); for the R-F condition 
with tabulated values of yt and y, (-O-); and for the R-F condition with reduced values of yt and 
y, (---A---); experimental results for the R-R condition (0); and R-F conditions (Marangoni 
instability) (X). The vertical solid line is an error bar. 

It is to be noted that, for a given layer, the ratio of Rayleigh to Marangoni numbers 
is a constant: 

The eigenproblem defined by (6)-(8) and the related boundary conditions is solved 
by the Galerkin method using Chebyshev polynomials as the basis functions. We are 
indebted to Bruce Murray (1994, personal communication) for allowing us to use his 
computer code for the solution of this problem. Depending on the solute Rayleigh 
number and the boundary conditions, 48 or 64 terms are used in the expansions to 
effect convergence. 

5.1. Comparison with experimental results 
For each of the eight experiments conducted with a free surface, the ratios RT/Mt  
and RJM,  are calculated using yt = 0.157 dyn cm-l O C - l  for pure water and 
ys = -0.367 dyn cm-l wt%-' for the salt solution (Weast 1977). We assume that the 
2 wt % salt concentration has no effect on yt. With the experimental value of the solute 
Rayleigh number R, as input, we determine the critical thermal Rayleigh number RT, 
wavenumber a, and frequency of oscillations ci of the overstable instability mode at the 
marginal state. We first apply the theory to the R-R case in which Marangoni effects 
are absent. The critical thermal Rayleigh numbers are listed in table 2 and are also 
shown as a function of Rs in figure 6. The theoretical results are the open circles spline 
fitted with a dotted line, and the experimental results are the closed circles (cf. figure 
5). It is seen that the agreement is excellent. 

The results for the R-F case, also listed in table 2, are shown using open squares 
spline fitted with a full line in figure 6 ,  and the experimental results are the crosses. It 
is seen that the predicted values have the same trend as the experimental results, though 
of lower magnitude. Note that the uncertainty in the experiments, shown as a straight 
line over the data at R, = 1.9 x lo', is comparable to the difference between the 
theoretical and experimental results. Our experiments have shown that, if, in the filling 
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FIGURE 7. The effect of reduced gravity on the critical conditions. The critical thermal Marangoni 
number ratio, Mt/Mt, (-n-); the critica1 wavelength ratio, h/h, (-X-); and the critical 
oscillation frequency ratio (-A-). 

process, the top layer consists of distilled water, the surface tension effects are 
essentially non-existent, or yt = y, = 0, at the onset of double-diffusive instability. It is, 
therefore, reasonable to expect that if, in the filling process, the top layer consists of a 
2 wt YO salt solution the actual values of yt and y, will be lower than those given by 
Weast (1977). We found by trial and error that when both yt and ys are reduced by a 
factor of 0.202, the predicted critical RT agrees with the experimental value at 
R, = 9.802 x lo6. Using the same factor in the other five cases, we obtain a theoretical 
curve, shown by the dashed line connecting the open triangles, which is in reasonable 
agreement with the experimental points. The theory also predicts increasing 
wavenumber with increasing R,, again in agreement with the experimental obser- 
vations. These results indicate that the linear stability theory correctly accounts for the 
competing effects of Marangoni and double-diffusive instabilities. 

5.2. Microgravity conditions 
We now examine the effect of reduced gravity on the onset of instabilities in a double- 
diffusive layer with a free surface by the use of the linear stability theory. We choose the 
case R, = 2.815 x lo7 and M ,  = -9.205 x lo4 and determine the critical conditions for 
instability as the gravity is reduced from go, gravity at sea level. At zero gravity, the 
critical thermal Marangoni number is Mt = 186.3, reflecting the rather weak stabilizing 
forces of the solutal Marangoni effect due to the cosine concentration distribution near 
the free surface. The critical wavenumber a = 2.2, and the frequency of oscillations 
at = 144.2. The critical conditions have been determined for the range R, = 2.815 to 
2.815 x lo7, while M ,  is kept constant. The results in terms of Mt/M,,, h/ho and a,/a,,, 
in which the subscript zero refers to the values at zero gravity and h is the critical 
wavelength, are shown as a function of R, in figure 7. The upper curve is for Mt/Mto ,  
which is essentially the ratio of the critical AT across the layer to that at zero gravity. 
It shows that even at 10-4g0 (R, = 2.815 x lo3), the critical AT is twice that at zero 
gravity owing to the buoyancy effect. As gravity (or R,) is increased, the critical thermal 
Marangoni number and frequency of oscillation become large, while the critical 
wavelength becomes smaller, signifying the increasing importance of the buoyancy 
effect. 
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FIGURE 8. The effect of reduced gravity on the perturbation streamlines at the marginal state for the 
R-Fcase: (a) R, = 2.815; (b)  R, = 2.815 x lo3; (c) R, = 2.815 x 10'; (d )  R, = 2.815 x lo' (at sea-level 
gravity). 

Streamlines constructed from the eigenvector W' are obtained for R, = 2.815 x loo, 
x lo3, x lo5, and x lo7 and are shown in figure 8. The horizontal extent of each plot 
is the non-dimensional wavelength. The nearly square cells due to the Marangoni effect 
alone at R, = 2.815 (at lO-'g,) are gradually squeezed to the top of the layer as gravity 
is increased. At R, = 2.815 x 107(lg0), for a layer thickness of 4 cm, each cell would be 
approximately 0.5 cm wide and 0.3 cm deep. These dimensions are approximately equal 
to the observed ones. 
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6. Discussion 
The main objective of this study is the effect of the Marangoni instability on the 

onset of double-diffusive convection. This effect is best illustrated by comparing the 
double-diffusive instability results in the R-F and the R-R cases. In figure 9 we plot 
the ratios RT/R? and RF/RT as a function of R, using the straight lines fitted to each 
instability mode (equations (2), (3) ,  (4)). 

We observe that the two lines are nearly horizontal, indicating a weak dependence 
of the ratios on R,. This is also indicated by the almost parallel lines on the stability 
map (figure 5) .  Since both ratios are smaller than unity, we conclude that the 
Marangoni instability reduces the critical RT for the onset of double-diffusive 
convection as compared to the R-R case. In particular, RT/R,T x 0.42 and 
RF/R; z 0.1. 

The effect of the Marangoni instability is larger in the top than in the bottom region. 
In the top region the early Marangoni convection weakens the concentration gradient, 
as observed in the concentration profile of figure 3 (b, middle). Consequently, double- 
diffusive instability will onset at a lower RT than for an undisturbed concentration 
gradient, as seen in figure 3(b, left) for the R-R case. Hence, in the top region, 
subcritical double-diffusive instability is triggered by Marangoni instability. 

In the bottom region double-diffusive instability occurs at a critical RT which is 
lower by about 30 YO than its corresponding value for the R-R case. This phenomenon 
is mainly attributed to the existence of finite-amplitude disturbances in the fluid, which 
trigger a subcritical double-diffusive instability in the bottom region. The capability of 
finite-amplitude disturbances to trigger subcritical double-diffusive instability was also 
noted by Shirtcliffe (1969). Also, the convection in the top region can trigger double- 
diffusive instability in the bottom region indirectly through its effect on the profiles of 
concentration and temperature. 

The line fitted to the data points of Marangoni instability in figure 5 is almost 
horizontal, i.e. RG depends very weakly on R,. This suggests that the Marangoni 
instability observed here is mainly caused by the gradient of the surface tension with 
temperature. The concentration gradient seems to have a very small effect on this 
instability mode. This phenomenon can be explained by the fact that before the onset 
of Marangoni instability, at the top of the layer, the temperature profile is linear but 
the concentration profile approaches zero because of the impermeable free surface (see 
figure 3a, middle and 3b, right). Thus the concentration gradient and hence R, have 
a very small effect on the Marangoni instability. 

Another interesting phenomena observed in the R-R experiments is the effect of the 
variable properties. It was mentioned before that in the R-R experiments with 
R, > 1.5 x 10' double-diffusive convection did not start simultaneously in the top and 
the bottom regions. The cause for this phenomenon is the temperature-dependent fluid 
properties, mainly the kinematic viscosity and the coefficient of thermal expansion. In 
the bottom region, the temperature was higher such that the viscosity was lower and 
the coefficient of thermal expansion was higher. In experiments with a large 
concentration difference (R, > 1.5 x 10') the critical temperature difference was large 
and so was the variation of the fluid properties. Therefore in such experiments, 
convection started first at the bottom, at a smaller critical temperature difference than 
that required to destabilize the top region. In low-concentration-gradient 
(R, < 1.5 x lo') experiments, the convection started simultaneously (i.e. within the 
same temperature adjustment) in the top and bottom regions. It is noticed that the 
same property variation existed in the R-F experiments. However, the effect of the 
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FIGURE 9. The stability ratio as a function of R,. Chain-dashed line is RTIRT. 

Dashed line is R,T/R,T. 

Marangoni instability at the top region overwhelmed the property variation such that 
in all the R-F experiments R,T < Rr. 

The linear stability theory as developed by Chen & Su (1992) using Chebyshev 
polynomials as basis functions has been applied to predict the onset conditions of 
instabilities in the laboratory experiments with both rigid-rigid and rigid-free 
boundary conditions. The onset of double-diffusive instability in a layer with R-R 
conditions using the realistic (cosine) salinity distributions shows remarkable 
agreement with the experimental data, even though the experimental Rayleigh 
numbers are very large, 106-107. For the R-F case, good agreement can be obtained 
when both y t  and ys are reduced from their accepted values owing to the presence of 
impurities on the surface. After validation by the experimental results, linear stability 
theory was applied to study the effect of microgravity on the onset of instabilities. It 
is found that, as the gravity is reduced, the critical Marangoni number is likewise 
reduced and the critical wavelength is increased. The buoyancy effect remains 
noticeable even at IOP4g,; the critical AT for the onset of instabilities is approximately 
twice that at zero gravity. 

7. Conclusions 
The following conclusions can be reached from the results of the experiments and the 

linear stability analysis. 
(i) For a double-diffusive layer with a free surface, at high initial solute Rayleigh 

numbers (R,  > 5.3 x lo6), the first instability to occur is the Marangoni instability at 
the free surface. At successively higher thermal Rayleigh numbers, double-diffusive 
instability first appears at the free surface, then at the bottom rigid surface. 

(ii) At lower solute Rayleigh numbers (R, < 5.3 x lo'), Marangoni and double- 
diffusive instabilities occur simultaneously at the free surface. Double-diffusive 
instability appears at the bottom rigid boundary at a higher thermal Rayleigh number. 

(iii) The Marangoni convection at the free surface contributes substantially to the 
reduction in the critical thermal Rayleigh number for the onset of double-diffusive 
convection, compared to its values in the rigid-rigid case. In the top region, RT is 
reduced by about 60 % and in the bottom region by about 30 YO. 

(iv) The linear stability analysis with an initial cosine salinity distribution yields 
results in reasonable agreement with the experimental results. 
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(v) For gravity as low as 10-4g, the double-diffusive effect is of equal importance as 
the Marangoni effect in destabilizing the fluid layer. 
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